APPROVAL SHEET

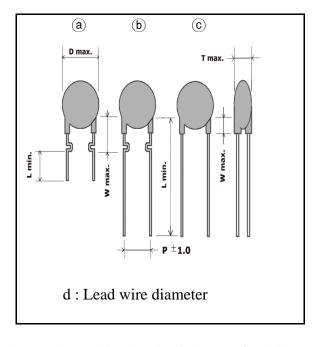
(承認仕樣書)

CUSTOMER	
I T E M	NTC THERMISTOR
MODEL	DSC-5D-20 MSSB
APPLICATION	
REMARKS	

DSC ELECTRONICS CO., LTD

9-2, Suyoung- Ri, Bongdam-Eup, Hwasung- City, KOREA TEL: (031) 296-7093 FAX: (031) 296-7096

SPECIFICATION FOR NTC THERMISTOR


1. APPLICATIONS

- 1) INRUSH CURRENT LIMITING IN PERIPHERAL COMMUNICATION EQUIPMENT, MONITORS, PCs, SMPS.
- 2) SOFT-START MOTORS, e.g. IN VACUUM CLEANERS
- 3) CIRCUIT APPLICATIONS REQUIRING HIGH CONTINUOUS CURRENTS
- 4) USEABLE IN SERIES CONNECTION UP TO 250 Vrms

2. FEATURES

- 1) HIGH RELIABILITY AND MINIMIZED AGE DRIFT, LOW-COST AND WIDE APPLICATIONS
- 2) BLACK SILICONE OR EPOXY COATED THERMISTOR DISK
- 3) STRAIGHT OR IN/OUT KINKED OR CUTTED LEADS OF TINNED, NICKEL PLATED COPPER WIRE
- 4) USEABLE IN SERIES CONNECTIONS UP TO MAX. 260Vrms (STEADY STATE 240Vrms)
- 5) AVAILABLE ON TAPE
- 6) RESISTANCE TOLERANCE < ±20% AVAILABLE UPON REQUEST
- 7) U.L. APPROVAL

3 DIMENSION

(UNIT : mm)

	a	Ъ	©
D (MAX.)	23	23	23
T (MAX.)	6	6	6
P	10.0	10.0	10.0
W (MAX.)	8	8	8
L (MIN.)	5 ± 1.0	25	25
d	ф1.0	ф1.0	ф1.0
WIRE FORM	F/C	F	S

4. ELECTRICAL CHARACTERISTICS

- 1) ZERO POWER RESISTANCE AT 25°C (Ohms):
- 2) MAX STEADY STATE CURRENT (Amps) :
- 3) THERMAL DISSIPATION CONSTANT (mW/C) : REFERENCE No. 5
- 4) THERMAL TIME CONSTANT (sec) :
- 5) OPERATING TEMPERATURE ($^{\circ}$) :
- 6) B VALUE (25/85 °C)

SPECIFICATION FOR NTC THERMISTOR

5. SPECIFICATIONS OF SIMILAR SIZE

TYPE No.	NORMAL RESISTANCE AT 25 ℃	MAX. STEADY STATE CURRENT	THERMAL DISSIPATION CONSTANT	THERMAL TIME CONSTANT	NORMAL B CONSTANT
	(Ω)	(A)	$(mW/^{\circ}\mathbb{C})$	(sec)	(25/85°C,K)
DSC - 1D -20	1.0	13	23	100	2950±15%
DSC - 2D - 20	2.0	11	24	100	3000
DSC - 2.5D -20	2.5	10	24	100	3000
DSC - 3D - 20	3.0	9	24	100	3100
DSC - 5D - 20	5.0	8	25	95	3150
DSC - 6D - 20	6.0	7.5	24	90	3150
DSC - 10D - 20	10.0	6.5	29	95	3150
DSC - 20D - 20	20.0	4.8	29	105	3200
DSC - 30D - 20	30.0	2	28	115	3230

※ Resistance tolerance : <±20%
</p>

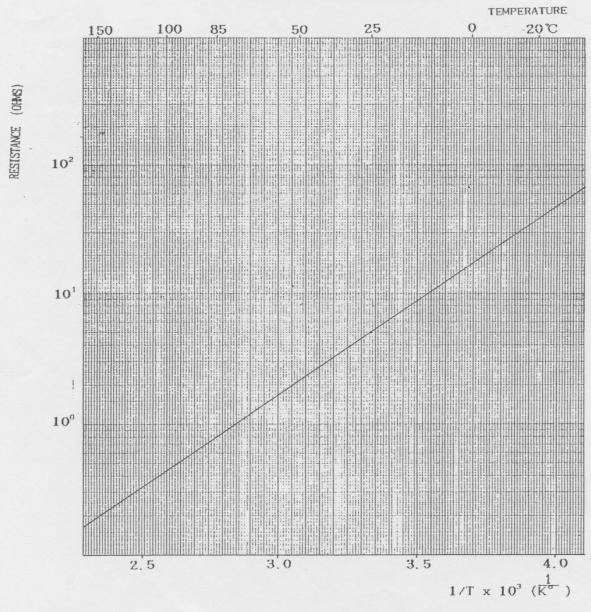
6. MATERIALS LIST

ITEM	MATERIAL	DESCRIPTION	WEIGHT(g)		ARDOUS STANCE		
	Mn3O4	POWDER 99% Up		CONT	AIN (PPM)		
	Co3O4	POWDER 99%		Pb	N . D		
Element	NiO		POWDER 99%	POWDER 99%		Cd	N . D
	CuO		$4.5\!\pm\!0.5$	Hg	N . D		
	Paste			Cr+6	N . D		
Lead wire	Cu / Sn			PBBs	N . D		
Solder	$\operatorname{Sn} \times \operatorname{Ag}$			PBDs	N . D		
Coating	Silicone	DP-777DBK					

3.TERMINOLGY AND GENERAL SPECIFICATIONS

TECHNICAL TERMS	DESCRIPTIONS	SPEC.
OPERATING TEMP.	OPERATING TEMPERATURE RANGE WITHOUT DERATING	-40 TO 180 ℃
STORAGE TEMP	STORAGE TEMPERATURE RANGE WITHOUT CURRENT APPLIED.	-30 TO 80 ℃
ZERO POWER RESISTANCE	THE ZERO POWER RESISTANCE IS THE RESISTANCE OF A THERMISTOR AT 25°C AMBIENT TEMPERATURE.	SEE RATING TABLE
B VALUE	B VALUE CAN BE DERIVED BY MEASURING THE RESISTANCE AT 25 $^{\circ}$ C (R1) AND85 $^{\circ}$ C (R2) AND CALCULATING BY FOLLOWING FORMULA. $Ln(R_2/R_1)$ $B = \frac{Ln(R_2/R_1)}{1/(273.15+T_2)-1/(273.15+T_1)}$	SEE RATING TABLE
MAX. STEADY STATE CURRENT	THE MAX STEADY STATE CURRENT IS THE MAXIMUM ALLOWABLE CURRENT AT LOADING TO MAX OPERATING TEMPERATURE IN 25°C AMBIENT.	SEE RATING TABLE
THERMAL DISSIPATION CONSTANT	THE DISSIPATION CONSTANT MEANS THE AMOUNT OF POWER REQUIRED TO RAISE THE APPLIED TEMPERA- TURE TO THE THERMISTOR IN STATIONARY STATE FOR 1℃.	SEE RATING TABLE
THERMAL TIME CONSTANT	THE TIME CONSTANT IS DEFINED AS RELATIONSHIP BETWEEN THE THERMAL CAPACITY AND DISSIPATION CONSTANT. IT IS MEASURED AS TIME IN SECONDS WITCH IS NEEDED FOR THERMISTOR TEMPERATURE CHANGE DF 63.2% DIFFERENCE BETWEEN INITIAL AND FINAL THERMISTOR TEMPERATURE.	SEE RATING TABLE

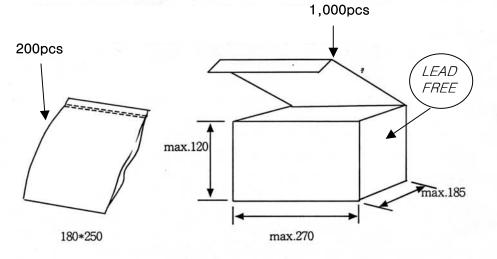
D S C


TECHNICAL TERMS	DESCRIPTIONS	SPEC.
LOAD LIFE	THERMISTOR SHALL BE STORED FOR	MAXIMUM
	1,000± 12HOURS AT 25 °C ± 2 °C WITH	RESISTANCE
	THE MAXIMUM RATED APPLICABLE	CHANGE:
	STEADY STATE CURRENT APPLIED.	± 15% OF
	AFTER THE STORAGE PERIOD.	INITIAL
	TO AND STABILIZED AT ROOM TEMP.	
		MAXIMUM
		RESISTANCE
	THERMISTOR SHALL BE SUBJECTED TO	CHANGE:
	THE FOLLOWING 10 CYCLES:	± 15% OF
	AT -40±3 ℃ FOR 30 MINUTES AND	INITIAL, AND
TEMPERATURE	AT +150±2℃ FOR 30 MINUTES.	THERE SHALL
CYCLE	AFTER THE CYCLES. THE THERMISTOR	BE NO
	SHALL BE RETURNED TO AND STABILIZED	EVIDENCE
	AT ROOM AMBIENT TEMP.	OF HARMFUL
		CORROSION,
		MECHANICAL
MOISTURE	THERMISTOR SHALL BE STORED FOR	MAXIMUM
RESISTANCE	1,000 ±12 HOURS AT 40±2℃, 90-95% RH	RESISTANCE
	WITH NO CURRENT APPLIED. AFTER THE	CHANGE:
	STORAGE PERIOD THE THERMISTOR	± 15% OF
	SHALL BE RETURNED TO AND STABILIZED	INITIAL.
	AT ROOM TEMP.	
LEAD FULL	AFTER GRADUALLY APPLYING THE 1Kg	
STRENGTH	LOAD AND KEEPING THE UNIT FIXED	NO
	FOR 10 SECONDS IN THE AXIAL	OUTSTANDING
	DIRECTION.	DAMAGE.
	THE LEAD SHALL BE VISUALLY EXAMINED	
	FOR ANY DAMAGE	
SOLDERING HEAT	THE LEAD WIRE OF THE THERMISTOR	MAXIMUM
RESISTANCE	SHALL BE DIPPED WITH 4±1mm SPACE	RESISTANCE
	OF 300±5℃ FOR 3 SEC, RETURNED	CHANGE:
	TO AND STABILIZED AT ROOM TEMP.	± 15% OF
		INITIAL.

TECHNICAL TERMS	DESCRIPTIONS	SPEC.
SOLDERABILITY	WHEN THE LEAD WIRE OF THERMISTOR WAS DIPPED INTO SOLDER (Sn98:Ag2) BATH of 330±5℃ FOR 3 SECONDS AFTER IMMERSION IN 25%RESIN FLUX. THE SOLDERABILITY RATIO OF LEAD WIRE SURFACE SHOULD BE MORE THAN 95%	MORE THAN 95% SOLDERABILITY
SURGE CURRENT LIFE	THERMISTOR SHALL BE SUBJECTED THE FOLLOWING 2,000 CYCLES SURGE CURRENT: MAX STEADY STATE CURRENTNTERVAL: 15 SECONDS AFTER THE CYCLES, THE THERMISTOR SHALL BE RETURNED TO.	MAXIMUM RESISTANCE CHANGE: ± 15%
INSULATION RESISTANCE	THE THERMISTOR SHOULD BE NO CHANGED. AFTER APPLIED THE VOLTAGE OF 1,500 Vac FOR ONE MINUTE BETWEEN THE LEAD WIRE AND THE INSULATION COATED PORTION.	WITHIN ± 15% RESISTANCE CHANGE AND NO DAMAGE.
INSULATION RESISTANCE	THE INSULATION RESISTANCE SHOULD BE OVER 500M OHMS WITH 1,000Vdc BETWEEN THE LEAD WIRE AND THE INSULATION COATED PORTION.	WITHIN ± 15% RESISTANCE CHANGE AND NO DAMAGE.
MODEL NUMBERING	DSC - D - D - COAT COAT TOLERA TYPE OF DISC ZERO POWER RESISTA SYMBOL OF DSC's NTC	NCE ELEMENT
L:	± 10%	IT GHT
B:	TAPING BULK CUTTING	

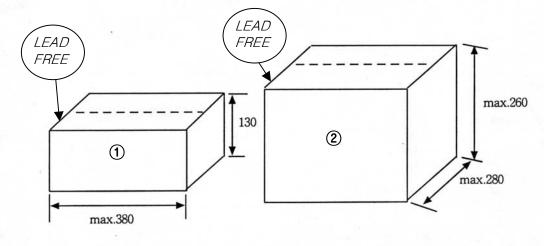
TYPICAL R-T CURVE FOR DSC SERIES (NTC)

MODEL NO. : DSC-5D-22 : 3150K DSC-5D-20 B VALUE


D S C

PACKING SPECIFICATION FOR THERMISTOR

(Unit : mm)


PACKING SHAPE

1. INNER PACKING BOX

2. OUT PACKING BOX (INNER BOX 2 & 4EA)

① 1,000 pcs * 2 inner box = 2,000 ② 1,000 pcs * 4 inner box = 4,000

